Quantile regression modeling to predict extreme precipitation
نویسندگان
چکیده
منابع مشابه
High quantile regression for extreme events
For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an L1-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performe...
متن کاملBayesian Nonparametric Modeling in Quantile Regression
We propose Bayesian nonparametric methodology for quantile regression modeling. In particular, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed nonparametric prior probability models allow the data to drive the shape of the error density and thus provide more reliable predictive inference than models based on par...
متن کاملSmoothed Quantile Regression for Statistical Downscaling of Extreme Events in Climate Modeling
Statistical downscaling is commonly used in climate modeling to obtain high-resolution spatial projections of future climate scenarios from the coarse-resolution outputs projected by global climate models. Unfortunately, most of the statistical downscaling approaches using standard regression methods tend to emphasize projecting the conditional mean of the data while paying scant attention to t...
متن کاملEXTREMAL QUANTILE REGRESSION 3 quantile regression
Quantile regression is an important tool for estimation of conditional quantiles of a response Y given a vector of covariates X. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. This paper develops a theory of quantile regression in the tails. Specifically , it obtains the large sample properties of extremal (ext...
متن کاملInference for Extremal Conditional Quantile Models (extreme Value Inference for Quantile Regression)
Quantile regression is a basic tool for estimation of conditional quantiles of a response variable given a vector of regressors. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. Quantile regression applied to the tails, or simply extremal quantile regression is of interest in numerous economic and financial appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1918/4/042031